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Reversible Oxidation of a Strained Alkene by Cp* ReO3 
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Reactions of metal oxides with alkenes have wide application 
in organic chemistry.1-4 The ability of a metal oxo complex to 
act as an oxidant is in part a function of the thermodynamics of 
the M=O bond. Little experimental evidence exists to describe 
the thermodynamics of this functional group.5 Of particular 
interest is the magnitude of the x interaction; there is no estimate 
of this quantity for any metal oxo complex. Elucidation of the 
energetics of interaction of alkenes with metal oxides is crucial 
to the further understanding and utilization of these reactions, 
particularly in the design of new reagents. This paper reports the 
first such thermochemical analysis for the system alkene + 
Cp*Re03 (Cp* = 7,5-C5(CH3)S).6 

Norbomene reacts with Cp*Re03 (I) (C6D6, sealed tube) to 
form two new diolate complexes (eq 1) at temperatures between 
90 and 125 0C. The major product is identified as the exo, anti 
isomer Ha on the basis of 1H NMR evidence.7 The upfield shift 

Table I. Equilibrium Constants for eq 1° 

T, K [NB]e» [diolates],/[Cp"Re03; *„ . M-' 

Major 
lis 

Minor 

of H-2,3 (from 6.01 to 4.05 ppm) is consistent with formation 
of a carbinol from the C=C bond; the symmetry and approximate 
chemical environment of the rest of the bicyclo[2.2.1]heptane 
system is retained. The only coupling to H-2,3 observed is a 
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Figure 1. van't Hoff plot for eq 1 showing temperature dependence of 
K^ between 90 and 125 0C. Slope (=-AH"/R) - 5519, intercept = 
-11.5, H = 0.897. 

1.5-Hz W-type coupling to H-7a (0.95 ppm), confirmed by double 
resonance and 2-D COSY experiments. Assignment of this major 
isomer as having the Cp* ligand anti to the C-7 bridge is assumed 
on the basis of minimizing steric interactions.8 Minor isomer lis 
shows the same coupling behavior and so is assigned the exo, syn 
geometry. 

Even with a 10-fold or greater excess of norbomene, an 
equilibrium mixture of diolates and Cp4ReO3 results, and the 
mixture of diolates Ila.s may be isolated by chromatography on 
silica. The reverse reaction, fragmentation to form norbomene 
and Cp*Re03, is observed when purified diolate is heated at 100 
0C. Furthermore, measurement of the equilibrium constant at 
four different concentrations of norbomene leads to the same 
equilibrium constant (11.4 ± 1.5 at 122.4 0C). The temperature 
dependence of this equilibrium gives LH0 = -10.9 ± 0.9 kcal/ 
mol and AS° = -22.8 ± 2.2 eu (see Table I and Figure 1). 

Norbornadiene reacts to completion to form Illa.s at tem­
peratures between 90 and 125 0C; at 110 "C, K > 500 M"1 and 
thus AG0 < -4.5 kcal/mol. Again two isomers are observed in 
approximately a 10:1 ratio, and NMR data suggest analogous 
structures for the major and minor isomers of II.9 Clean 
fragmentation is not observed on heating the pure diolate, but 
slow decomposition to unidentified products is seen. Conversely, 
we confirm6ab that no forward reaction is seen between Cp*Re03 
and excess ethylene (measured [C2H4] = 2 M); at 90 0C K < 

(8) Irradiation of the Cp* methyl groups in Ha showed no nuclear 
Overhauser enhancement of the norbornane protons for the major isomer; due 
to inability to resolve protons for the minor isomer, the analogous experiment 
was not performed. As pointed out by a referee, the lack of all four possible 
isomers in pure form means the assignment of structure is not proven beyond 
all doubt. 

(9) Major product: 1HNMR (QD,) J 1.723 (s, 15 H), 1.80 (dtt, J = 9.4, 
1.5, 1.5 Hz, 1 H), 2.86 (dt, J = 9.4, 2 Hz, 1 H), 3.02 (dddd, / = 2, 2, 1.5, 
1.5 Hz, 2 H), 4.44 (d, J = 1.5 Hz, 2 H), 5.97 (dd, J = 2, 2 Hz, 2 H); "C 
NMR (C6Dj) o 11.00, 43.20, 50.68, 95.69, 107.95, 139.11. Minor product: 
!H NMR (CD6) S 1.77 (s, 15 H), 2.92 (ddd, J = 2.0, 2.0, 1.5 Hz, 2 H), 3.66 
(br d, J = 7.4 Hz, 1 H), 4.91 (d, J = 2.0 Hz, 2 H), 5.89 (dd, J = 1,2 Hz, 
2 H). Anal. Calcd for C17H11O1Re (Found): C, 44.24 (44.16); H, 5.02 
(5.10). 
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0.005 M"1 and AG0 > 3.6 kcal/mol. Ethylene extrusion from 
Cp*Re(0)(OCH2CH20) (IV) is observed between 60 and 110 
0C, as originally reported by Herrmann et al.6ab 

These results clearly show that this system is at a thermody­
namic balance point. Unstrained alkenes are not oxidized by 
Cp*Re03,'° but alkenes with even a small amount of strain are 
converted to diolates. The double bond strain energy in nor-
bornene has been estimated as 5.7 kcal/mol." Taking the 
"isolated bond" approach12 and using strain energy, the expected 
electronic difference between ethylene and a disubstituted 
alkene,13 and typical C - C , C=C, and C—O bond energies,14 

we estimate the Re-O T bond strength in Cp*Re03 (Z)(Re=O) 
- Z)(Re-O)) to be approximately 50 kcal/mol.15 This estimate 
allows us to calculate that oxidation of ethylene should be 
thermoneutral or slightly exothermic, and therefore oxidation of 
unstrained alkenes with Cp*Re03 is disfavored only by entropy. 
The significance of this is that for a dioxo metal complex to be 
an effective bishydroxylation reagent, it must have a weaker M=O 
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IT interaction, as is expected for later metals (such as OsO4) or 
those higher in the periodic table (such as MnO4

-). 
We are currently exploring how strain in these and other alkenes 

affects kinetic activation parameters in this system as a means 
of elucidating the energetics of the reaction pathway. 
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(15) This includes the obviously incorrect approximation that the Re=O 
bond in I is the same as the Re^O bond in II, but such a discrepancy is likely 
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